Positive periodic solutions of nonautonomous functional differential systems
نویسندگان
چکیده
منابع مشابه
Positive periodic solutions of functional differential equations
We consider the existence, multiplicity and nonexistence of positive o-periodic solutions for the periodic equation x0ðtÞ 1⁄4 aðtÞgðxÞxðtÞ lbðtÞf ðxðt tðtÞÞÞ; where a; bACðR; 1⁄20;NÞÞ are o-periodic, Ro 0 aðtÞ dt40; Ro 0 bðtÞ dt40; f ; gACð1⁄20;NÞ; 1⁄20;NÞÞ; and f ðuÞ40 for u40; gðxÞ is bounded, tðtÞ is a continuous o-periodic function. Define f0 1⁄4 limu-0þ f ðuÞ u ; fN 1⁄4 limu-N f ðuÞ u ; i0...
متن کاملPositive Periodic Solutions of Nonautonomous Functional Differential Equations Depending on a Parameter
where a = a(t), h = h(t), and τ = τ(t) are continuous T-periodic functions. We will also assume that T > 0, λ > 0, f = f (t) as well as h = h(t) are positive, ∫T 0 a(t)dt > 0. Functional differential equations with periodic delays appear in a number of ecological models. In particular, our equation can be interpreted as the standard Malthus population model y′ = −a(t)y subject to perturbation w...
متن کاملPositive Periodic Solutions for Nonautonomous Impulsive Neutral Functional Differential Systems with Time-varying Delays on Time Scales
Using a fixed point theorem of strict-set-contraction, we prove the existence of positive periodic solutions for a class of nonautonomous impulsive neutral functional differential system with time-varying delays on time scales.
متن کاملExistence of Positive Periodic Solutions for Neutral Functional Differential Equations
We find sufficient conditions for the existence of positive periodic solutions of two kinds of neutral differential equations. Using Krasnoselskii’s fixed-point theorem in cones, we obtain results that extend and improve previous results. These results are useful mostly when applied to neutral equations with delay in bio-mathematics.
متن کاملPeriodic Solutions of Second-order Nonautonomous Impulsive Differential Equations
The main purpose of this paper is to study the existence of periodic solutions of second order impulsive differential equations with superlinear nonlinear terms. Our result generalizes one of Paul H. Rabinowitz’s existence results of periodic solutions of second order ordinary differential equations to impulsive cases. Mountain Pass Lemma is applied in order to prove our main results. AMS Subje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2007
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2006.09.084